Table 1
Threshold energy (Ed), threshold acceleration voltage (Ud), and cross section (s) for atomic displacement of pure element by fast electron irradiation [1, 2]. Most of the values for Ed and Ud were taken from the references [3-5]. A list of the systematic experimental data was firstly summarized by K. Urban [3,4] and slightly modified by H. Fujita [5]. The s values were calculated using the McKinley-Feshbach formula, which is frequently used in radiation damage analysis [6-9]., (Updated on 02/21/2014)
012 Mg (Atomic number 12, Atomic mass number 24.31, Ed 14 eV)
013 Al (Atomic number 13, Atomic mass number 26.98, Ed 14 eV)
014 Si (Atomic number 14, Atomic mass number 28.09, Ed 19 or 13 eV)
022 Ti (Atomic number 22, Atomic mass number 47.88, Ed 19 eV)
023 V (Atomic number 23, Atomic mass number 50.94, Ed 26 eV)
024 Cr (Atomic number 24, Atomic mass number 51.9961, Ed 26 eV)
026 Fe (Atomic number 26, Atomic mass number 58.93, Ed 22 eV)
027 Co (Atomic number 27, Atomic mass number 58.93, Ed 22 eV)
028 Ni (Atomic number 28, Atomic mass number 58.69, Ed 24 eV)
029 Cu (Atomic number 29, Atomic mass number 63.55, Ed 19 eV)
040 Zr (Atomic number 40, Atomic mass number 91.22, Ed 26 eV)
041 Nb (Atomic number 41, Atomic mass number 92.21, Ed 33.5 eV)
042 Mo (Atomic number 42, Atomic mass number 95.94, Ed 30 eV)
046 Pd (Atomic number 46, Atomic mass number 106.4, Ed 34 eV)
047 Ag (Atomic number 47, Atomic mass number 107.9, Ed 24 eV)
050 Sn (Atomic number 50, Atomic mass number 118.7, Ed 12 eV)
051 Sb (Atomic number 51, Atomic mass number 121.75, Ed 14.6 eV)
060 Nd (Atomic number 60, Atomic mass number 144.2, Ed 19 eV)
072 Hf (Atomic number 72, Atomic mass number 178.5, Ed 29 eV)
073 Ta (Atomic number 73, Atomic mass number 180.9, Ed 32 eV)
074 W (Atomic number 74, Atomic mass number 183.84, Ed 35 eV)
078 Pt (Atomic number 78, Atomic mass number 195.1, Ed 33 eV)
079 Au (Atomic number 79, Atomic mass number 197, Ed 33 eV)
Figure 1
Cross section (s) for atomic displacement of pure element by fast electron irradiation. Most of the values for Ed and Ud were taken from the references [3-5]. The s values were calculated using the McKinley-Feshbach formula, which is frequently used in radiation damage analysis [6-9]., (Updated on 02/20/2014)
REFERENCE
[1] T. Nagase, Advanced materials design by irradiation of high energy particles, in: Progress in Advanced Structural and Functional Materials Design, Ed., T. Kakeshita, Springer, 2013. pp. 137-153., ISBN 978-4-431-54063-2, http://www.springer.com/materials/structural+materials/book/978-4-431-54063-2
[2] T. Nagase, T. Sanda, A. Nino, W. Qin, H. Yasuda, H. Mori, Y. Umakoshi, J.A. Szpunar, J. of Non-Cryst. Solids, 358, 502-518 (2012)., http://dx.doi.org/10.1016/j.jnoncrysol.2011.11.010
[3] K. Urban: Phys. Stat. Sol. A 56, 157–168 (1979).
[4] K. Urban: Electron Microsc. 4, 188–195 (1980).
[5] H. Fujita: Hiheikou-zairyo no Riron to Gijyutsu, Seminar text of Japan Institute of Metals, 73–82 (1989). (in Japanese)
[6] W.A. Mckinley, H. Feshbach: Phys Rev., 74, 1759-1763 (1948).
[7] F. Seitz, J.S. Koehler: in: Seitz, F., Tumbull, D. (Eds.) Solid State Physics, Vol. 2, Aca-demic Press, New York, (1956).
[8] J.W. Corbett: in Electron Radiation Damage in Semiconductors and Metals, Academic Press, New York, (1966).
[9] O.S. Oen: Nucl. Instrum. Methods Phys. Res. Sect. B 33, 744–747 (1988).