Introduction, Solid state amorphization |
Database, Solid state amorphization |
Crystal-to-Amorphous-to-Crystal (C-A-C) transition |
Relationship between SSA and Martensite transformation |
It is well known that MeV electron irradiation in HVEM can lead to solid-state amorphization (SSA) of intermetallic compounds. After first findings of MeV electron irradiation induced SSA [1-3], systematic experimental and theoretical studies on electron-irradiation-induced SSA have been conducted to understand the SSA mechanism [4,5]; The systematic experimental research clarified that this phenomenon was commonly observed for metallic materials [4]. It is proposed that the generalized Lindemann melting (GLM) criterion and theoretically suggested that SSA is a kinetically constrained melting process [5]. The experimental data on the occurrence of solid-state amorphization (crystal-to-amorphous transition) by MeV electron irradiation reported to date is summarized in the literatures [6, 7].
REFERENCES
[1] H. Mori, H. Fujita, Jpn. J. Appl. Phys. 21 (1982) L494.
[2] G. Thomas, H. Mori, H. Fujita, R. Sinclair, Scr. Metall. 16 (1982) 589.
[3] A. Mogro-Campero, E.L. Hall, J.L. Walter, A.J. Ratkowski: in S.T. Picraux, W.J. Choyke (Eds.), Metastable Materials Formation by Ion-Implantation, North-Holland, New York, 1982, pp. 203–208.
[4] H. Mori, Current topics in amorphous materials, in: Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, K. Suzuki (Eds.), Physics and Technology, Elsevier Science Publishers, Amsterdam, 1997, pp. 120-126.
[5] P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformations, in: H. Ehrenreich, F. Spaepen (Eds.), Solid State Physics, vol. 52, Academic Press, San Diego, 1999.
[6] T. Nagase, Advanced materials design by irradiation of high energy particles, in: Progress in Advanced Structural and Functional Materials Design, Ed., T. Kakeshita, Springer, 2013. pp. 137-153. ISBN 978-4-431-54063-2., http://www.springer.com/materials/structural+materials/book/978-4-431-54063-2
[7] T. Nagase, P. D. Rack, J. H. Noh, T. Egami, Intermetallics, 59, 32-42 (2015)., http://dx.doi.org/10.1016/j.intermet.2014.12.007
Table 1
Amorphization tendency in intermetallic compounds under MeV electron irradiation. The experimental data on the occurrence of solid-state amorphization (crystal-to-amorphous transition) by MeV electron irradiation reported to date [1,2]. The experimental data list was firstly developed by H. Mori [3], and most of the data are taken from that list.
Updated, 12/25/2014
Compounds | Experiment | C-A-C transition | Memo | |
Al2Au | No | |||
Al2Cu | No | |||
AlCu(η2) | No | |||
Al9Co2 | Yes | |||
Al5Co2 | No | |||
Al7Cr | Yes | |||
Al5Cr | Yes | |||
Al4Cr | Yes | |||
Al9Cr4 | No | |||
Al8Cr5 | No | |||
AlCr2 | No | |||
Al3Fe | Yes | |||
Al5Fe2 | No | |||
Al2Fe | No | |||
AlFe | No | |||
Al6Mn | Yes | |||
Al4Mn | Yes | |||
Al3Mn | No | |||
Al11Mn4 | No | |||
AlMn (γ2) | No | |||
Al12Mo | No | |||
Al8Mo3 | No | |||
Al3Ni | No | |||
Al3Ni2 | No | |||
AlNi | No | |||
AlNi3 | No | |||
Al10V | Yes | |||
Al45V7 | Yes | |||
Al23V4 | Yes | |||
Al3V | No | |||
Al8V5 | No | |||
Al3Ti | No | |||
Al2Zr | Yes | |||
Al3Zr2 | Yes | |||
AlZr | Yes | |||
Al4Zr5 | Yes | |||
Al3Zr4 | Yes | |||
Al2Zr3 | Yes | |||
AlZr2 | Yes | |||
Al3Zr | No | |||
AlZr3 | No | |||
Al12W | No | |||
BCo2 | Yes | |||
BCo3 | Yes | |||
BCo | No | |||
BFe3 | Yes | |||
BFe2 | No | |||
B3Ni4 (o) | Yes | |||
BNi2 | Yes | |||
BNi | No | |||
B3Ni4 (m) | No | |||
BNi3 | No | |||
Co3Ti | No | |||
Co2Ti | Yes | |||
CoTi | No | |||
CrFe | No | |||
Cr2Zr | Yes | ○ | ||
Cr2Ti | Yes | |||
Cu3Ti2 | Yes | |||
Cu4Ti3 | Yes | |||
CuTi | Yes | |||
CuTi2 | Yes | |||
Cu4Ti | No | |||
Cu10Zr7 | Yes | |||
CuZr | Yes | |||
CuZr2 | Yes | ○ | ||
Fe17Nd2 | Yes | ○ | ||
Fe2Ti | Yes | |||
FeTi | No | |||
FeZr2 | Yes | |||
FeZr3 | Yes | |||
Mn2Ti | Yes | |||
MoNi | Yes | |||
Nb7Ni6 | Yes | |||
NbNi3 | No | |||
NiTi | Yes | |||
NiTi2 | Yes | |||
Ni3Ti | No | |||
Ni3Zr | Yes | |||
NiZr | Yes | |||
NiZr2 | Yes | |||
PdTi2 | No | Partial Amorphization | ||
PdZr2 | Yes | ○ | ||
Pt3Zr5 | Yes | ○ | ||
Fe23Nd2B3 | Yes | ○ | ||
Fe14Nd2B | Yes | ○ | ||
Fe81Zr9B10 | Yes | ○ | ||
Fe4Nd1.1B4 | No | |||
Ti50Ni48Fe2 | Yes | |||
Ti50Ni44Fe6 | Yes | |||
Ti50Ni40Fe10 | Yes | |||
Ti50Ni30Fe20 | Yes | |||
Ti50Ni20Fe30 | Yes | |||
Ti50Ni10Fe40 | Yes |
REFERENCES
[1] T. Nagase (Contribution): Advanced materials design by irradiation of high energy particles, in: Progress in Advanced Structural and Functional Materials Design, Ed., T. Kakeshita, Springer, 2013. pp. 137-153. ISBN 978-4-431-54063-2., http://www.springer.com/materials/structural+materials/book/978-4-431-54063-2
[2] T. Nagase, P. D. Rack, J. H. Noh, T. Egami, Intermetallics, 59, 32-42 (2015)., http://dx.doi.org/10.1016/j.intermet.2014.12.007
[3] H. Mori, Current topics in amorphous materials, in: Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, K. Suzuki (Eds.), Physics and Technology, Elsevier Science Publishers, Amsterdam, 1997, pp. 120-126.