Irradiation damage in High Entropy Alloys の履歴ソース(No.1)


|[[High Entropy Alloys]]|
----



*Irradiation damage in High Entropy Alloys [#ncc94eae]

#ref(http://t-nagase.sakura.ne.jp/pict/20151005/03-01-HEmaterial.jpg,left,nowrap,photo)
''Figure 1''
''Schematic illustration of the model of the simplest type defect in multi-component alloys such as High Entropy alloys (HEAs) [4,8]''
~

High-Entropy Alloys (HEAs) consists of multi-component materials with an approximately equiatomic ratio of components [1-3]. These alloys have a high entropy of mixing, which distinguishes them from conventional alloys. Solid solutions with multi-principal elements have generally been found to be more stable than intermetallic compounds at elevated temperatures because of their large entropies of mixing. Some researchers have defined a HE material as one that has at least five principal elements, each of which has an atomic concentration between 5% and 35%.~
Multi-component alloys with equiatomic compositions, such as HEAs, have a potential to possess superior phase stability against irradiation damage because of the special defect structure and/or particular atomic level stress [4,5]. We investigate the irardiation damage in multi-component equimolar alloys (MEAs) and HEAs because these materials may be a new type of nuclear material that do not show irradiation damage problems because of faster irradiation damage annihilation and/or evaluation processes compared to conventional crystalline materials [6-8].~
~
REFERENCES~
[1] B. Cantor, I.T.H. Chang, P.K. Night, A. J. Vincent: Mater. Sci. Eng. A 375, (2004) 213-218.~
[2] S. Ranganathan: Curr. Sci., 85 (2003) 1404-1406.~
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.~
[4] T. Nagase, Advanced materials design by irradiation of high energy particles, Progress in Advanced Structural and Functional Materials Design, Ed., T. Kakeshita, Springer, 2012. pp. 137-153. ISBN 978-4-431-54063-2, http://www.springer.com/materials/structural+materials/book/978-4-431-54063-2~
[5] T. Egami, W. Guo, P. D. Rack, T. Nagase, Metall. Mater. Trans. A, 45 (2014) 180-183., http://link.springer.com/article/10.1007/s11661-013-1994-2~
[6] T. Nagase, S. Anada, P. D. Rack, J. H. Noh, H. Yasuda, H. Mori, T. Egami, Intermetallics, 26 (2012) 122-130., http://dx.doi.org/10.1016/j.intermet.2012.02.015~
[7] T. Nagase, S. Anada, P. D. Rack, J. H. Noh, H. Yasuda, H. Mori, T. Egami, Intermetallics, 38 (2013) 70-79., http://dx.doi.org/10.1016/j.intermet.2013.02.009~
[8] T. Nagase, P. D. Rack, J. H. Noh, T. Egami: Intermetallics, 59, 32-42 (2015)., http://dx.doi.org/10.1016/j.intermet.2014.12.007~

トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS